NLSE

Solving the Nonlinear Schrödinger Equation using the Split-Step Fourier Method to model pulses through an optical fiber

\( \frac{\partial A}{\partial z} = -\frac{\alpha}{2} A - i\frac{\beta}{2} \frac{\partial^2 A}{\partial T^2} + i\gamma |A|^2 A \)

YouTube   Souce
Gaussian pulse
\( A \cdot \exp\left[-\left(\frac{1+j \cdot C_h}{2}\right)\left(\frac{t}{\tau}\right)^{2 \cdot m} - j \cdot 2 \pi f_c \cdot t\right] \)
Sinc Pulse
\( A \cdot \text{sinc}\left(\frac{t }{\tau}\right) \cdot \exp\left[-\left(\frac{1+j \cdot C_h}{2}\right)\left(\frac{t}{\tau}\right)^{2} - j \cdot 2 \pi f_c \cdot t\right] \)
Sech pulse (Soliton)
\( \frac{A}{\text{cosh}\left(\frac{t }{\tau}\right)} \cdot \exp\left[\frac{-j \cdot C_h}{2} \cdot \left(\frac{t}{\tau}\right)^{2} - j \cdot 2 \pi f_c \cdot t\right] \)
Parameters
Pulse Number of Points Time Resolution \(dt\)(s) Fiber Number of Steps
e
Input Pulse :
Amplitude A (W1/2) Pulse Duration: \(\tau =k \cdot dt; \) Carrier frequency \(f_c\) (Hz) Chirp \(C_h\) Order \(m\) Add Noise
\( k =\) Noise Amplitude \( = A / \)
Fiber Properties
Gamma \( \gamma \) (W-1.m-1) Beta \( \beta \) (fs2.m-1) Alpha \( \alpha \) (dB.m-1)
e e e
Length (m) Use Characteristic Fiber Length : \( Z \cdot \frac{\pi}{2 \cdot \tau^2 \cdot |\beta|} \) Use Characteristic Pulse Amplitude: \( A \cdot \left( \frac{|\beta|}{\gamma \cdot \tau^2} \right)^{1/2} \)
e \(Z =\) \( A =\)
Loading...